

eae

BUYERS’ GUIDE We outline the crucial |
questions a prospective buyer should ask OA
about a communications system

TAKING ON BOARDS The Memotech
RS128 hasall the features ofthehighly- 949
regarded MTX500 series, with disk drive)
interfaces as well | le Soe |

ON EDGE The Human Edge is a suite of
four programs that claims to ‘increasea _ O45
user’s individual professional skills in such
areas as management, sales, negotiations
and communications.’

COMPUTER BOOKS Two more book |
reviews: Women and Computing by Rose 960)
Deakin and The Micro Revolution Revisited
by Peter Large

! Another investigation of LOGO’s
mathematical abilities. This week we show
you how to create programs that calculate
factorials

LANGUAGE CONSTRUCT TO LIFO
A weekly glossary of computing terms Q re

SCREEN PLAY This week we show you
how to program screen displays for special Q5 ?
locations in our adventure game for the
Commodore 64

THE FX EFFECT We discuss the use of
OSBYTE calls to access the functions of the
BBC Micro’s operating system

MEASURE FOR MEASURE Our
Workshop robot is capable of measuring the O43,
length of a straight-sided object. We outline
the method and provide the program listings .

| BACK
INDEX A complete index to issues 37 to 48 COVERS

COVER PHOTOGRAPHY BY IAN McKINNELL TELEPHONES PROVIDED COURTESY OF THE TELEPHONE BOX

COMMUNICATIONS APPLICATION

BUYERS’ GUIDE
Having taken a detailed look at how
computers communicate with each other,
we now turn our attention to the vexed
problem of choosing a suitable modem and
communications package for your micro.
Rather than suggesting specific packages,
however, we outline some of the more
pertinent questions you can ask.

ING.

SOFTWARE SUPPORT MENU

1 Select terminal emulation

pctcieelelacme)e|-) acne le)ats)
3 ASCII transmit/receive
4 Binary transmit /receive

You may have been advised, when originally
selecting your computer system, that you should
first decide what software you want to use and
then choose the hardware that will run it. To some
degree, this is sound advice when choosing a
communications system. However, we suggest
that it is often far better to buy your modem and
software as a package from the same dealer.

The first thing you must do is decide what
you're going to use the system for. To access
viewdata systems such as Prestel you'll need a
1200/75 baud modem; for most bulletin boards
and electronic mail systems you'll need a 300 baud
modem; and for direct user-to-user work, a 1200
baud rate is recommended. To access Compunet,
a special Compunet modem is required, since
some of the software is stored in the modem’s
ROM. You'll also need to take into account the
frequencies used. In the UK, you require CCITT
frequencies; in the US, you need Bell tones.
Therefore, if you intend to make direct
transatlantic calls, your modem needs to be
capable of both frequencies.

For user-to-user communications, it’s strongly
advisable to have a modem that can be switched
between ‘originate’ (transmission) and ‘answer’
(reception) frequencies. If your modem operates
only on originate, the modem yourre calling must
be capable of being switched to answer.

If you intend to call bulletin boards, an auto-
dial modem is virtually essential. This is because
most bulletin boards have only a single telephone
line and allow access to one user at a time. For this
reason they are frequently engaged, so it makes
sense to get the modem to do the repeated dialling
for you. An auto-dial modem should also have
supporting software that is capable of obtaining a
number — either from the keyboard or from a
database of phone numbers — and sending this to
the modem in the correct format. Unfortunately,
different auto-dial modems want the number sent
to them in different forms, so the modem and
software need to be compatible — a good
argument for buying both modem and software as
one package.

If you want people to send data directly to you,

5 Auto-log file mode
6 Database auto-dial

you may find an auto-answer modem a
worthwhile investment. If you plan to use your
normal telephone line for this purpose, however,
it’s polite to warn your friends — particularly those
without modems. Otherwise, your modem may
whistle at them for ten seconds, and then hang up!

Appropriate software is also essential for an
auto-answer modem. Such software ranges from
packages capable of opening a new file for each
call and saving this to disk, to sophisticated
bulletin board software such as TBBS. An
interesting piece of auto-answer software for
CP/M micros is Remote CP/M. This package
allows you to dial up your CP/M micro and
execute any CP/M program over the telephone —
which is ideal for users with both a desk-top and a
portable micro.

In choosing suitable software, you will almost

THE HOME COMPUTER ADVANCED COURSE 941

SOMERS

Making The Connection
The range of available hardware
and software options makes
buying a modem a confusing
and specialised task: our ideal
unit (Shown here) combines the
features of a number of actual
modems. For a beginner, the
best approach is to specify your
anticipated communications
requirements, and rely ona
dealer to choose the appropriate
package

STEVE CROSS

certainly want a package that is able to up-load
and down-load ASCII files. Make sure the
package supports whatever storage device you
use. BAsIc programs can be transmitted in ASCII
form — as we’ve already shown (see page 921) —
but if you want to transmit binary files (for
example, CP/M .COM files), you'll need some
kind of binary transmission protocol. Of these, the
most widely supported is XModem.

It’s also convenient to be able to create auto-log
on files for different systems. Then, when you log
on to a system, all you have to do is load the
appropriate file, containing your ID, password
and so on. Some auto-dial systems will link this
type of file to a database of phone numbers so that
all you need do is enter the name of the service you
want; the software will look up the phone number,
dial it and automatically log on.

Once you’ve decided on the features you
require, you need to find a modem and software
package that supports these facilities. You can buy
the modem and software separately, but we
strongly recommend that you give a dealer a list of
the features you require, and details of the micro
you will be using, and leave it to him to find a
complete package of modem, cable and software.
That way, if the system doesn’t do what you wantit
to, you and the dealer both know whose
responsibility it is to put it nght.

CHOOSING A SUITABLE
TERMINAL
If you already have a micro you'll probably want
to use it as your terminal. This should be possible
whatever machine you have — even a ZX81 can
be used if you’re determined enough — although
some micros are better suited to communications
applications than others. Here is a brief summary
of the suitability of four of the most popular
micros

By far the easiest machine to convert to a
terminal is the BBC Micro. In fact, you can write a
simple dumb terminal program for it in a few lines
of BASIC:

100 REM BBC Dumb Terminal Program
110 *FX2,2
120: °F Xe: |
130 REPEAT: GET AS: IFS=CHRS$(13) THEN PRINT
140 PRINT AS;:UNTIL FALSE

Several good communications packages are
available for the BBC Micro, some of which are
supplied on ROM, but they tend to be expensive.
‘Most offer all the features you need, because the
’BBC Micro’s operating system does most of the
work — all the programmer has to do is add
finishing touches.

The Spectrum is more difficult to adapt. Firstly,
you won’t be able to achieve any communications
breakthrough in Basic. With a BASIC program it’s
just about possible to push the Spectrum up to
about 10 baud, and then it won’t be able to
perform such tasks as storing the characters in

942 THE HOME COMPUTER ADVANCED COURSE

RAM. You can also disregard your Interface 1:
it’s not an RS232 interface and is little use for
communications. Virtually no communications
software is available for the Spectrum yet.

The Commodore 64 also has a non-standard
serial interface, and most modems for the machine
plug into the user port. Again, you can’t do
anything very useful in BAsic. The 64 also has a
non-standard ASCII character set, so the
communications software needs to translate
between standard ASCII and Commodore ASCII
— something that can be done easily using a look-
up table. There are no Commodore-approved
communications software packages. UK users can
obtain Termulator from Chris Townsend
Computers; US users should check with local
dealers. Compunet users can use the official
Commodore Compunet modem with resident
software, but this modem can be used only for
Compunet.

Tandy supplies dumb terminal software for its
disk-based TRS-80 machines running under most
operating systems. Most of it is intended primarily
for direct machine-to-machine transfer but can
also be used with modems. Tandy machines were
the first micros used to run and access bulletin
boards, so there is normally a good selection of
both disk- and cassette-based public-domain
communications software to be found. TRS-80s
are not suitable for viewdata (1200/75 baud)
operation.

Almost any business micro can be used for
communications, but there are several important
points to check. Firstly, there’s a growing
tendency towards built-in modems; these —
particularly the ones with ROM-based
communications software — are obviously the
easiest to use. They simply need to be plugged into
the telephone socket.

Failing a built-in modem, the next best option is
a micro with at least two RS232 ports, allowing
you to use a modem and serial printer
simultaneously. Some micros have separate, non-
standard modem ports: these will serve, assuming
you can get a suitable cable, for your chosen
modem.

In terms of software, you shouldn’t have
problems with a CP/M, MS-DOS or PC-DOS
machine. Non-standard operating systems,
however, are just as much a liability with
communications packages as with any other
software.

If communications is your main reason for
buying a micro, the so-called ‘lap-held’ machines
such as the Tandy Model 100, the NEC PC8201A
and the Olivetti M10 are well worth considering.
With one of these and a battery-operated modem
you have a conveniently portable briefcase
terminal. All three machines have built-in text
editors and terminal software and give about 20
hours use from four AA battery cells. These
machines retail at between £300 and £500, and a
portable acoustic modem will cost you from £180
to £250.

KEVIN JONES

MEASURE FOR
MEASURE
We return to our Workshop robot project to
design a piece of software that will allow the
robot to locate and accurately measure one
side of a straight-sided object.

To allow our robot to locate and measure the side
of an object requires a reasonably sophisticated
piece of software. The robot will probe the object
using the microswitch sensors that we fitted on
page 876. Our first thoughts about a possible
method of accomplishing this task were:

1) Find the object.
2) Find one end of the side located.
3) Probe along the side of the object until the other
end is met.

The first stage can be accomplished easily if we
assume that when the program starts the robot is
pointed at the side of the object we want to
measure. The main problem that can be foreseen
is that the robot may catch one end of the side with
a single sensor rather than make contact with both
sensors. The possible variations are shown in the
diagram. However, even if only one front sensor is
closed, it is possible to tell whether it is the left or
right sensor, and, therefore, we can develop a
strategy to deal with this situation.
We must also make the assumption that the

Feelings...
This peel ek the three
alternatives that could occur
when the sensors come into
contact with the side ofan |

object. When only the right-
hand sensor is closed, the

- robot has detected the left-

hand end of the side; if both
are closed, it ‘knows’ that it’s

somewhere in the middle; if
only the left-hand sensor is
closed, it has stumbled on the
right-hand end of the side

~~ Right sensor only closed —

robot is initially positioned at 90° to the object side
to be measured. This avoids our having to deal
with cases where the robot makes an oblique
contact with the object.

The second stage in our method is simplified so
that the robot always moves to the right-hand end
of the object before starting to measure it. To
locate the right-hand end, the robot must ‘feel’ its
way down the side, moving in discrete steps to the
right until only the left sensor (rather than both)
closes. In order to probe down the side, the robot
has to perform a complicated series of
manoeuvres — each step involving five
movements. Assuming that the robot is initially in
contact with the side of the object, then it must
reverse back, turn through 90°, move forward a
certain distance, turn back 90°, and finally move
forward until the sensors again make contact with
the object. The diagram shows the steps involved
in the full manoeuvre. The ‘step-length’ (the
distance between one contact point with the
object’s side and the next) is equivalent to the part
of the manoeuvre when the robot moves parallel
to the object’s side. See

To locate accurately the right-hand end of the
object, it would appear that the robot would have
to probe along the side in steps of a few
millimetres, but this is unnecessary. Instead, we
can use larger steps, probing down the side of the

- | let sensor only closed : Both sensors closed

THE HOME COMPUTER ADVANCED COURSE 943

object until the end is overshot, and then
backtrack one step to probe in smaller steps to
locate the right-hand end of the object accurately.
A suitable step-length is the distance between the
two front sensors — around 60 mm (2% in) —
since this ensures that when an overshoot occurs,
one sensor will still close.

The third stage involves a similar method of
probing, but this time the robot moves to the left,
counting the number of steps taken until the left-
hand end is encountered. At the end of this stage,
the length of the object side will be held in the
count variable and can be PRINTed.

MEASUREMENT PROGRAM
We give listings for the Commodore 64 and BBC
Micro. The pulse/distance and pulse/angle ratios
— found by experiment in the last instalment of
the robot project (see page 894) — should be
inserted for your own robot. The procedural
nature of BBC Basic is ideal for writing a program
of this type. We can adopt a highly structured
approach to the problem, controlling each
movement made by the robot via separate
procedures. Two features of BBC Basic —
extended variable names and parameter-passing
between procedures — mean that the program can
more closely resemble the way we think. The
Commodore version can adopt the same
structured approach, but notice how much more
difficult structuring is in Commodore BAsic — the
Commodore 64 program is much more difficult to
follow than the BBC version.

Having isolated the main tasks that the
program must perform, we can design individual
procedures for moving the robot and combining a

series of manoeuvres to create a ‘probing’
procedure. Combining probing procedures forms
the overall ‘measure’ procedure. In _ this
application, the different procedural levels are
easily identified, ranging from a.simple procedure
to pulse the motors at the lowest level to the entire
measuring activity at the highest.

Problems can arise if the robot is not initially
positioned at exactly 90° to the object side to be
measured. If only one sensor makes contact when
both should, then the logic of the program will
make the robot decide that it is positioned at one

_ end of the object. If this happens then break into
the program, align the robot perpendicular to the
side to be measured, and run the program again
from the beginning.

Several intrinsic measuring errors can be
identified. The width of each sensor, for example,
is around 5 mm (/ in). Locating the left- and
right-hand ends of the object, therefore, can
produce a total maximum error of 10 mm (‘% in).
In addition, when the robot accurately probes for
the ends of the object, it does so in steps of 5 mm,
and thus a further error of 10 mm can be
introduced. When testing our prototype robot, the
average error in measuring an object of side 410
mm (16 in) was around 20 mm (°/, in) — an error
of only five per cent.

944 THE HOME COMPUTER ADVANCED COURSE

flzzh

|| foro RP Gey : E fR ERR BABA! . | COC |

Le
———

aC
The figure above — ‘move forward the step-length = as shown below. At first the
demonstrates the robot's (3). The robot performs robot takes a number of large
basic probing manoeuvre. another 90° turn so that it is steps, to gain an approximate _ |
When both sensors are once more facing the object length of the object. When.
closed, the robot willreverse (4), and finally moves forward only one, or neither, of the

(1) to enable ittoturn without — (5) to test whether the object sensors is closed, the robot
colliding with the object. © is still in front of it. backtracks the last step, and

The robot will then This process is repeated repeats the whole probing
perform a 90° turn (2) and along the length of the object, procedure using smaller steps

Probing Procedure

Start:

— Overshoot, so go back one : Probing in large steps
large step

Repeat procedure in smaller
Steps to accurately locate end
of side :

KEVIN JONES

\e Ves

BBC Micro Listing Commodore 64 Listing
1000 REM **** BEC ROBOT MEASURE *x#*x REM kkxk CBM ROBOT MEASURE «x«*
1010 MODE 7 20 GOSUBIQ@QO:REM INITIALISE
1020 PROCinitialise BQ GOSUBCAGO: REM MEASURE
1030 PROCmeasure 40 GOSUBSOBOQ:FEM PRINTOUT
1040 PROCprintout 50 EMG

1050 END 62

1060 DEF PROCmeasure 1600 REM «exe INITIALIGE #eK*
1070 PROCfind 1910 ODP =56579:04TREG-56577
1080 REM ** ONE BUMPER ONLY @ #* 1920 POKE OOR 1S:REM LINES 8-3 GUTFUT

1070 PROCtest bumpers 1039 POKE DATREG, 1: REM TURI] CH RESET BIT
1100 REM *x*x FIND END *xe*e 1040 Filled: Blilee: Le =6:R 7a

1110 REPEAT :PROCprobe(rioht width) 1050 PO=3. 34446:FA-2 75 Se
ill20 UNTIL ¢ PDATREG AND 192)=)eFft _bumper 1960 RB=128:.R=64:BR=0:NB=192

‘ 1130 REM ** GO BACK AND INCH TO END #* 1A7O Wineee: cies
1140 PROUCprobe< left width) 1080 PETURT
1150 REPEAT: PROCorobe(right,amal]_width> ina

1160 UNTIL (POARTREG AND [92)=lett bumper POONA PEM x£KkKK MEASURE ke x

1170 PRINT “FOUND RIGHT—-HAND END" 2010 GOSUBSSOO:REM FIND OBJECT
‘ 1180 PRINT"STARTING TQ MEASURE" 2020 GOSUB4aa@0:REM TEST BUMPERS

1170 REM ** START TO MEASURE x« POSO REM x** FIND END «x

1200 count=width 2A40 LIV=RT:SP=WD:GOSUBGQG0:REM PROBE |
1210 REPEAT: PROCprobe(left width) 2950 IF CPEEK CDATREGANDi92)<>LE THEN e@@40 |
i220 count=count+width _ - Be@6e@ REM ** GO BACK AND INCH TO END 4%
1230 UNTIL ¢ ?DATREG AND 192)=right_ bumper 2070 DR=LF:O0S=lI0:GOSUBGQ00:REM PROBE |
1240 REM ** GO BACK AND INCH TO END xx PASH DR=RT:OS-SuW:GOSUBGOeO:REM PROBE

1250 count=count-width ‘(PO98 IF (PEEK CDATRESANDI92)<>oLB THEN 2aso |
1260 PROCprobe(right ,width> 2190 PRINT"FOUND RIGHT-HAND END" |
1270 REPEAT :PROCprobe(leftt,smal!] width) S110 PRIRIT°oSTERTING TO MEASURE” |
1280 count=countt+smal!] width

1270 UNTIL ¢ ?DATREG AND 192)=right bumper
1300 ?DATREG=0
1310 ENDPROC

elee REM #£* STRRT §O PIEASURE £*

elee CC -he

#140 DP=LF(PS-WO i GOSUBGROO: Cl HCC TWD

el5h [FPCPEEK CORIREGOANDISe 2% -RE THEN ele
1320 Sok : 2IGB REM *#* GO BACK ANO INCH TO END &x
1330 DEF PROCorintout Sif Cece in

1340 CLS / 2180 DR=RT:0S5<1ID:GOSUBeGQ9a:CC=CC+SW
1350 oN ee 12) "OBJECT SIDE MEASURED AT P1AM IF “PEEK COATREG)ANDi92)<>RB THEN 2189

*gcount;" mm" 2206 POKE OATREG ©
1360 ENDPROC P2ie RETURN
1370 : Pee |
1380 DEF PROCinitialise S000 REM «see PRINT OUT xexKe

(1370 DDR=&FE62:DATREG=&FESO SA10 PRINTCHRS< i147) |
1400 ?DDOR=15:REM LINES 0-3 QUTPUT 3020 PRINT"OBJECT MEASURED AT : "CCCs "hm"
19410 ?DATREG=1:REM TURN ON RESET BIT BORO RETURN
1420 forwards=4:backwarde=2:left=é6:ri ght=0 sa4Q@ :
1430 pd_ratio=3.344446:pa_ ratio=375/90 3500 REM &£kkek FIND 4x e%
1440 right bumper=128:left_bumper=64 S510 OR=FWLOS=5:GOSUB7G00:REM MOVE
1450 both _bumpers=O:nei ther _bumpers=192 2520 IF (PEEK CDATREG)ANDI92)=NB THEN 3512
1460 width=60:small width=5 3530 RETURN
1470 ENDPROC : So4d0 :

S606 REM *#e#ee* TEST BUMPERS 444%
1470 DEF PROCsearch(sense) 4010 IFPCPEEK CDOATREG GNO0i92>=RB THEN SS=RT:
1500 REPEAT :PROCpr obe< sense ,width) GOSUB5000: RETURN
1510 UNTIL (?DATREG AND 192)=both bumpers 4@2Q@ IF (PEER <CATREGOAND1Se°=LB THEN SS=LF:

GOSUB5@00:RE TURN
4030 RETURN
A4Q4o :

1320 ENDPROC

1940 DEF PROCfind
19550 REPEAT :PROCmove(forwards, 8) 5SOOG PEM 4kkk SEARCH <SS) keeK
1560 UNTIL< PDATREG AND 1?2)<>nei ther bumpers . eo = : 1570 ENDPROC SQ1O OR=FlW:0S=8:GOSUB7900:REM MOVE
i580 : SOeO [FCPEEK (OR TREGJANDIGe@)=NB THEN Sole

1590 DEF PROCtest_bumpers a
{600 IF ¢ ?DATREG AND [172 .=right bumper THEN BAOO REN KxkkeA PROBE (Lis SPa xxxr

PROCsearch(right) :ENDPROC Galo ie beet Tue oe
1610 IF (PDATREG AND {Se Hleft _ bumper THEN GAPO ITF LveLe THEN OWeERT

PROCsearch< left) :ENDPROC GO29 DR=BLI:0S=30:GOSUB7@@e:REM MOVE
1620 ever’ 6A4Q OR<WY:AG=90:GOSUB7500:REM TURN

GO5@ OR=FW:0S=SP:GOSUB7@G@0:REM MOVE
6@6@ DR=OW:AG=90:GCSUB7500:REM TURN
6A70 OR=FW:DS=8:GOSUB7O00:REM MOVE
GOS IF (PEEK CDATREG)ANO1S2)=NB THEN 6a70
GOGO RETURN
6ia0
7OO@ REM *kk% MOVE (OR DS) xaKe
7010 POKE DATREG, “PEEK <DATREG)AND 1)0R DR
7020 PL=PO40S
7@30 FOR I=1 TO PL:GOSUBSsmQa:NEXT 1
7040 RETURN
7050
7500 REM «ex TURN (DRAG) kexx
751@ POKE DATREG, (PEEK COATREG)AND 1 °0R OR
7520 PL=PAxAG
7530 FOR [=1 TO PL:GosuRsQ0a:NEXT 1
7548 RETURN
7550
8000 REM «kee PULSE xxke
8010 POKE DATREG PEEK (OATREG)IOR 3
B02 POKE DATREG,PEEK(DATREG)AND e47
S030 RETURN

‘ 1640 DEF PROCprobe(way,cteo?

1650 [IF way=right THEN opp wayvsleft ELSE
Opp way=right

1660 PROCmove (backwards ,30)

1670 PROCturniway, 70)
d 1680 PROCmove(forwards,step>

1670 PROCturn‘(opp way, 70)

1700 REPEAT :PROCmove(forwards ,8)

1710 UNTIL ¢ 7DRTREG AND 172) <>nei ther bumpers
1720 eNoreet

1740 DEF PRoCmove(dir, distance)
1750 7DATREG=<« PDATREG AND 1 >0R dir
1760 pulses=pd ratioxdistance
1770 FOR I=1 [0 pulses: PROCpulse:NEXxT I
1780 ENDPROC
1f70 :

1800 DEF PROUCturn(dir,angie>

1610 ?DATREG=(?7DATREG AND 120R dir
1820 pulses=pa ratio*angle
1830 FOR {f=1 [0 pulses: PROCpul se:NEXT I

1840 ENDPROC
1850 DEF FPROCou] se
1860 *DATREG=(7DATREG OR §)
1870 ?DATREG=(PDATREG AND 247)
1680 ENDPROC

THE HOME COMPUTER ADVANCED COURSE 945

946 THE HOME COMPUTER ADVANCED COURSE

Our series of articles describing vertical
software continues with a look at a suite of
programs based on _ assessments of
personality characteristics and designed to
help business people plan strategies for
working with colleagues and clients.

SESE SS Se RSS

An intermediate step toward artificial intelligence
has been taken by Human Edge Software, a
California-based programming house. Human
Edge programs are sophisticated commercial
decision-making tools that work quickly through
large amounts of data supplied by the user,
evaluate the data according to stored criteria, then
produce a recommended course of action. The
Human Edge is a suite of four programs —
Communications Edge, Sales Edge, Management
Edge and Negotiation Edge — for IBM and IBM-
compatible machines. The complete suite costs
nearly £1,000 and claims to ‘increase a user’s
individual professional skills’ in the areas specified
in the names of the individual programs. A scaled-
down version, called Mind Prober, is available for
the Commodore 64, Apple II and Macintosh,
using the same techniques, but we will focus here
on the four-program suite.

The programs are said to be the outcome of
more than ten years of development, involving the
work of behavioural scientists and business experts
and incorporating new techniques such as human
factors analysis, expert systems technology and
decision theory mathematics.

This description sounds rather dramatic and
coupled with the cost of the programs could
intimidate the potential user. However, the
programs are easy to use and can be operated fully
after less than an hour’s self-teaching. They are all
menu-driven, being built around lengthy
questionnaires consisting of a series of carefully
worded statements with which users are asked to
agree or disagree. The statements query the
significant personality characteristics of the user,
as well as his sales prospects, current clients,
company subordinates and superiors, and
whichever aspect of business relations the user
wishes to investigate.

Responses are evaluated by the program and a
detailed report, including a recommended course
of action, is prepared. The recommendation may
be a suggested opening approach to a new client,
an effective closing strategy for a difficult sales
prospect, or negotiation techniques to use with
employees or employers.

Each program begins with a self-assessment
questionnaire, presenting statements such as: ‘I DAVID HIGHAM

take charge in most meetings’, ‘I argue with others
more than most’, ‘I am somewhat impulsive’, and
so on. The user decides whether the statement is
an accurate description of himself, then enters his
response. The self-assessment tool has been
prepared effectively, with a considerable
overlapping of questions as an internal measure of
validity. Thus, the user’s responses to ‘I am
somewhat impulsive’ and the later statement ‘I
sometimes act without thinking’ will be evaluated
against one another for consistency. When this
section is complete, the responses are stored on
disk. They can be updated and reused at any time.

Once the self-assessment has been made, the
user is asked to agree or disagree with a series of
adjectives as they relate to the object of enquiry.
Words such as_ talkative, apprehensive,
independent, achieving, ambitious, courteous,
flaunting and empathetic are used to help the user
gauge his client, employer or subordinate. When
working through this list, it might be helpful to
have a good American dictionary at hand to help
in understanding some of the terms, since the
Oxford English Dictionary, doesn’t recognise
‘empathetic’. A common definition would be
‘aware of another, compassionate’, although the
more common English usage is ‘empathic’.

The user can move through the list of adjectives
and change responses at any time. As with the self-

erate

assessment, the list is saved to disk, though it can
also be updated in the light of further experience.

The self-assessment need be completed only
once, then it can be recalled from disk and used to
relate to any of several ‘counterpart’ lists. Up to
eight counterpart assessments can be saved on
disk. When two completed ‘lists are present, the
program takes the responses and evaluates them,
then prepares a report that synthesises the
characteristics of the user and his subject.

The following report, generated by
Communication Edge, is based on a real user and
counterpart (the user’s teenage son), the latter
being described as Mr.T (for Test). The report is
presented as though the computer were speaking
directly to the user:

“Your flexible, stable approach to people will
be needed in communicating with Mr. T. He is a
very private person who prefers being alone and
who has very little patience with small talk or
socialising. Expect a cynical or suspicious attitude
as you solicit his ideas and feelings. In speaking to
him, make few assumptions that he understands
you. Be clear, concise and direct.’

‘In contrast to your even-tempered style, Mr. T
angers quickly and can even appear angry before
the conversation begins. He may try to force his
opinions on you. Remain cordial, despite this
approach. Also be _ prepared for his
unpredictablility. He can speak impulsively one
minute, while choosing every word with caution
the next. Take on the role of guiding the process of
the meeting. Paraphrase his comments to achieve
clarity and agreement.’

Parents will probably recognise the description of
a typical adolescent, although Communication

Edge asks no questions about the age of the
subject (the person’s sex is considered, however).

The vocabulary used by the reports will be
familiar to those who read newspaper advice
columns or who participate in similar personality
quizzes. The user is generally portrayed in
sympathetic terms (‘even tempered, flexible,
stable’), while the subject is less well-favoured
(‘angers quickly, unpredictable, cynical,
suspicious’). This is probably designed to
reinforce the user’s self-image, and perhaps to fit
current American management thinking of
business as warfare, with the sales prospect or
customer as the enemy whose resistance must be
overcome. cong

This becomes even more obvious in
Negotiation Edge, which recommends such
strategies (printed in headline capitals) as:

USE MR T’S KNOWLEDGE TO YOUR
ADVANTAGE. :

SET MR T UP WITH EARLY CONCESSIONS
GET MR TIN THE HABIT OF SAYING “YES”
VEIL YOUR THREATS
EXAGGERATE YOUR PROBLEMS
DOWNPLAY YOUR PROFIT
SETTLE ON A GOOD NOTE

It seems to be assumed by the developers et a
user will have only one of the four programs, since
each requires the user to complete a separate self-
assessment, presenting more or less identical
questions in a slightly different order. In view of.
the price, this may be a reasonable assumption,
but since a major organisation would be most
likely to use them as management tools it would
have been helpful to'be able! to, use'the same self-
assessment in all four. But as the programs are so
similar one could simply take the least expensive
of the suite, Communication Edge, and adapt its
reports to fit a variety of situations.
A serious weakness in the programs, if they are

to be used as management tools, is their inability to
learn from experience, leaving aside the user’s
own updating of assessments. For example, it
would be valuable for the user to be able to enter
the results of a proposed strategy so that it could
be modified in the light of experience, especially in
evaluating subjects of whom little is known
initially. In addition, many of the questions are
difficult to answer on a strict ‘agree or disagree’
basis, and there is no evidence of a tree structure to
the questioning that would permit amplification
or verification of answers. One solution might be
the inclusion of a ‘don’t know’ option, which
would then open up the way to a lower-level
question that could be answered positively or
negatively.

In the final analysis, one either believes in this
type of approach to human relations or one does
not. Perhaps the most profitable way of using it
would be as an aid to careful preparation before an
interview, but then the user must beware of taking
its advice too literally — at least until computers
become real thinking machines.

THE HOME COMPUTER ADVANCED COURSE 947

948 THE HOME COMPUTER ADVANCED COURSE

LANGUAGE CONSTRUCT
Programming languages have several structures

built into them for managing often-used
operations. One such structure is the keyword, in
which a word like PRINT is always used to indicate
the process of sending information to the video
display. Generally, a keyword is fairly simple and
refers to a single action.

By extension, languages must have constructs,
or built-in routines, for more sophisticated
operations, or for sets of operations that
accomplish a specified task. An example of this is
a loop construct, such as a FOR... NEXT loop. The
actual operations to be looped are defined by the
programmer, but the ability to execute a loop
itself is inherent in the language.

The essentials of any computer language are
assignment, decision, addressing and input/
output constructs — BAsic, for example, has =
IF... THEN, line numbers, INPUT and PRINT.

LASER PRINTER
A laser printer is a high-speed, high-quality
device that uses a laser beam to write characters
onto an electrically charged light-sensitive
surface. ‘The characters are formed from a matrix

of many densely-packed dots, and are then
beamed onto the photographic surface. This
creates a character pattern with an electrical
charge. The charged pattern attracts a toner, thus

~“developing’ the character image. The image is
transferred to paper by heat or pressure, and fixed
there by passing the paper through a chemical
vapour bath. This process is very similar to that
used in many office copying machines. Laser
printers have full graphics and colour capabilities,
and can produce many different typestyles.

LCD
Liquid crystal displays, or LCDs, are becoming
increasingly popular as video display units for
microcomputers. An LCD consists of a seven-
segment display, where each segment is filled with
a transparent liquid. The display is sandwiched
between two electrodes, with a reflective backing
material and a clear cover. When current is
applied to the electrodes, the liquid in the affected
segment becomes opaque, forming a solid bar.
The main advantages of LCDs for

A Slice Of Light .

The LCD comprises two
polarised glass filters
sandwiching a very thin layer
of liquid crystal. Behind this
‘Sandwich’ is an array of
electrodes, which trace out
the shapes of the characters.
When current is applied to the
crystal through the
appropriate electrodes, the
alignment of the molecules in
the overlying liquid crystal
changes, making the
character shape stand out
from the background

microcomputers are the small amount of space
they need, and their minimal power
requirements. These factors make LCDs ideally
suited to use in portable computers. Their major
disadvantage is lack of speed: a fast typist can
type several characters in the time it takes for the
LCD to register the first ee

LED
An LED is a semiconductor diode that emits
light when a current is applied — the initials stand
for “Light Emitting Diode’. Single LEDs, usually
red in colour, are often used as warning or
informational signals on computer consoles. Like
LCDs, LEDs can be combined into a block
pattern of seven segments to create alphanumeric
characters. This type of display is commonly used
on pocket calculators. However, because the
power requirements of LEDs are greater than
those of a liquid crystal display, LEDs are
gradually being phased out in favour of LCDs.

LEXICAL ANALYSER
Because computers have to handle data in certain
very specific ways, language compilers must have
a special set of routines that take data and alter it
to fit the structure needed by the CPU. A lexical
analyser is such a set of routines; it breaks
Statements into their component parts —
recognised by the analyser as tokens — separating
variable names from commands, and so forth. It
also adjusts spacing, removing unnecessary
spaces and characters, and replacing upper case
letters with lower case, or vice versa, as
demanded by the compiler.

LIFO
An acronym for ‘Last In First Out’, LIFO refers
to the way in which information is stored in a
stack. The last item placed in the stack is the first
to be removed. The classic analogy relates this
process to a stack of plates held in a spring-loaded
tray. The top plate is the first used. When it has
been removed from the stack, the rest of the
plates move up one position. In computer terms,
this action is called a pop. Adding plates on top
presses the rest of the stack down; this is referred
to as a push. LIFO stacks are commonly used in
text buffers. (See also FIFO, page 576.)

TAKING ON BOARDS

Realising that 2 an 1 absence of built-in disk
drive interfaces may have detracted from
the otherwise highly-regarded Memotech
500 series of micros, the company has
recently released the RS128, with full
interface facilities. The new machine is a
stylish addition to the Memotech Tang

Despite being highly regarded machines, the
Memotech 500 series of microcomputers — the

~ MTXS00 and MTX512 — has been largely
overlooked by home computer buyers. Attractive
features — such as high resolution graphics, a
built-in assembler, a sophisticated BAsic and a
unique text-handling language called Noppy —
have certainly not detracted from these machines,
but their failure to achieve great popular success
could be attributed to their falling between two
distinct segments of the home computer market.

On the one hand, priced at around £300, the
machines are a little expensive for the games
player who may think that more sophisticated
features are not worth the higher cost. On the
other hand, the ‘serious’ user (Memotech says that
the series is aimed at the small business user) may
have been deterred by the fact that the 500 series
lacks built-in interfaces, which would allow it to be
connected to disk drives. These interfaces were
available, but they came as separate boards,
designed to be fitted to an edge connector inside
the machines. This is not altogether surprising

-. coming from a company that made its name by
providing add-on boards for the ZX81 (see page
580), but it seems to have failed to impress users

~ who wanted a machine that they could just plug in
and run. Memotech seems to have recognised this
problem and has introduced the RS128, a
machine with interfaces built in.

THE LOOK OF THE MACHINE
At first glance, the RS128 looks identical to the
500 series — it gives the impression of being stylish
and a little up-market. Like its siblings, the
machine is cased aluminium, instead of the usual
plastic, and this makes a Memotech machine
considerably heavier than most other micros.
There is a standard QWERTY keyboard and a
numeric keypad, which holds some of the
commands for the Noppy text programming
language. There are also eight programmable
function Keys to the right of the keypad. The keys
have an excellent feel and are built to a high
professional standard.

There are a few minor niggles with the layout:
the Return key is not much larger than the

ordinary keys and touch typists may at first have
difficulty in locating it, and the Delete key is not on
the typewriter keyboard itself, but located on the
numeric keypad instead. There is a Backspace key
in the top right hand corner, but unlike most
computer keyboards, where the Backspace also
acts as a Delete-left key (known as a “destructive
backspace’), on the Memotech it is simply a
-cursor-left.

On the back of ‘he machine there is anumber of |

interfaces. Some of these were provided with the
500 series, and others are recent additions. On the
far left of the machine is a pair of RS232 ports,
which enable the machine to be connected to
FDX floppy disk drives. These ports can also be
used for other purposes, such as serial printers and

_ networked communications. To the right of the
RS232s is a composite video jack and a hi-fi jack
— the latter allows the computer’s sound to be
amplified through a normal stereo system. The
power socket and RF jack come next, followed by
a Centronics-type printer interface. The cassette
interface consists of a pair of microjack sockets,
for EAR and MIC, in the same style as the Sinclair
Spectrum. Finally, there is a pair of nine-pin
Atari-style joystick ports.

The interface ports are labelled in white
lettering, which can be clearly read from the back
of the machine. This would seem to allow
peripherals to be plugged in without having tolean |
over to look at the back. Unfortunately,
Memotech has set the ports into depressions in the

Much Improved
The Memotech RS128 is an

improved version of the
MTX500 series. This new model

is fitted with twin RS232

sockets, which enable the
machine to run the FDX floppy
disk drives. This means that the

computer is especially attractive
to the serious home micro user

or the smail business user

THE HOME COMPUTER ADVANCED COURSE 949

HARDWARE/ MEMOTECH RSI28

User RAM RF Modulator | | | A
The Memotech RS128 has 64 This device produces a signal Graphics Chip | th

Kbytes of RAM availablefor == ~—spermitting the RS128 to This chip is also used in the

use by the CPU support a TV screen MSX machines F

ar
di

la
F

GI
%, th

st

by
SF

Expansion Boards .
These boards, which are th
optional on the Memotech SD

900 and 512, are fitted as pl
standard on the RS128 pl

ol
m

Cassette Interface CC
These two sockets pI
correspond to the Ear and Mic T

sockets on a cassette player ai

CC

Joystick Ports bi
These ports allow Atari- di
standard joysticks to be fitted RS232 Board
to the computer The RS232 board controls the pl

serial communications of the al

computer. This allows it to be di
connected to the FDX disk cl
drive, as well as modems E

CPU
ne

The RS128 uses the Zilog
Z80A chip as its central H
processing unit O]

K
di
W

Uj
Silicon Disk d
This board contains an extra tr

Video RAM 64 Kbytes of RAM. This is not . it

Unlike many other directly accessible by the CPU 1 ¢:

computers, the Memotech Monitor Socket (which can only address a
computers have their own This interface permits the maximum of 64 Kbytes), but
video RAM provided. This RS128 to drive a composite acts as though it were held on la
means that the User RAM is video monitor an external disk. However, the Cl
not taken up by screen speed of access is greatly br

memory | increased 9

| N
machine so that the user still has to peer over to EDIT command. Furthermore, the operating u!
locate the plugs. — system will not allow a line to be inserted into the | p

The 24 by 40 character Basic screen is divided program from the EDIT screen if the line contains a
into three sections, which are best shown on syntax error. R
power-up. The top 19 rows are the main screen, The Basic itself is a close relative of MSX BASIC tc
where program listings are scrolled. Below this is containing such commands as SOUND, PAPER, INK, tl
the EDIT screen, where new lines are entered. At and CIRCLE. However, the Basic also contains fc
the bottom of the screen is a single line for some useful commands not available in MSX C
displaying error messages. Like the Sinclair Basic. These commands, on the whole, relateto Se
machines, program lines are altered by use of an . the screen-handling capabilities of the machine. Ce

950 THE HOME COMPUTER ADVANCED COURSE

Cae,

Asan example, the command CSR x,y will position
the cursor at the point with the co-ordinates (x,y)
on the screen. A more powerful command is
CRVS, which enables the user to define a window
anywhere on the screen. Text or graphics can be
displayed within these windows.

There are also commands built into the
language to enable the control of sprites. A
particularly useful command in this respect,
GENPAT, allows you to set the sprite pattern, rather
than having to put the pattern into data
statements. The Memotech graphics are provided
by the TMS9929A Video chip — which is the one
specified for MSX machines.

The central processor of the Memotech
machines is the Z80, and this of course, enables
them to run the CP/M operating system. Many
small computer manufacturers choose the Z80
processor because it runs CP/M, which avoids the
problem of having to generate a large software
base before the customers can take full advantage
of a new computer. Of course, to really make the
most of CP/M, the computer has to have an 80-
column screen, and, unusually, Memotech has
provided an 80-column card inside the disk drive.
The drives themselves are double-sided and
double-density, and have a transfer rate to the
computer of 9,200 baud.

Provided with the disk drive is a package of
bundled software. Apart from a CP/M systems
disk, the package includes the NewWord word
processor, the SuperCalc spreadsheet, Compact
and Televideo — which allow the drives to read
disks written in other disk formats (Memotech
claims this includes IBM disks) — and Contact,
which enables the second RS232 port to link into a
networked system.

The RS128 has 128 Kbytes of RAM on board.
However, as it uses an eight-bit processor, and is
only able to address 64 Kbytes, the other 64
Kbytes are provided as a ‘silicon disk’. A silicon
disk stores files and programs in exactly the same
way as a floppy disk, but as it is held on chips it is
up to 50 times faster than a conventional floppy
disk. Information held on a silicon disk is
transferred to addressable RAM when it is
required. At the end of a work session, the data
can be permanently stored on a floppy disk.

The manual provided with the machine is much
larger than those usually provided with home
computers, although this is predominantly
because it has not been typeset, and there is not a
great deal more information included. However,
Memotech has included all the technical details a
user might need, including circuit diagrams,
pinouts and operating system calls.

In upgrading the Memotech 500 series to the
RS128, the company has made strenuous efforts
to produce a business standard machine. At £399,
the machine certainly looks worthy competition
for the Sinclair QL, the BBC Micro and the
Commodore Plus/4. However, it remains to be
seen whether the machine will generate sales to
compare with those of its rivals.

MEMOTECH RS128/HARDWARE

Memotech
RS128

£399

488x202x56mm

Z80A running at 4MHz

64K RAM and 24K ROM

40x24 in text mode. Text with
graphics mode: 32x24 text and
296x192 pixels in 16 colours.
There are also facilities for up to 32
independently controllable sprites

Cassette (Mic and Ear) ports; 1/0
interface; two joystick ports; two
RS232 ports; hi-fi jack; composite
video jack; TV jack; parallel
interface

Star

Command

BASIC, FORTH, PASCAL

57 typewriter keys; keys F and J are
recessed for finger location. 12
function keys on a numeric keypad
and eight programmable function
keys

Utilities

The manual provided is the same
as that for the MTX500 series. The
manual is extremely
comprehensive, although perhaps
much of the tutorial is pitched a
little too high for the beginner

The addition of the RS232 boards
make the RS128 a very attractive
buy for the ‘serious’ home user and
small businessman

Tt

1 BUN
Despite the machine’s ability to run
CP/M, the RS128 is still poorly
supported in terms of software
written especially for the machine

Software
Support
These are some of the
business and games
packages that are currently
available for the Memotech
machines. Compared with
some other machines, the
amount of software available
is rather limited, but access to
the CP/M pool of software
should go some way towards
rectifying this problem

Basic Business

mmand:

1 screen ais dee ined | ominand = ee

to cont inwe>

TIANNIMOW NVI

THE HOME COMPUTER ADVANCED COURSE 951

Shoot-Em-Up!
The joystick port’s ‘shooting’
action is accomplished on the
64 through the use of a sprite

defined as a projectile. The
outlines are set by POKEing zeros
into the defining area, then the
solid areas are READ from DATA
statements and poked into the
correct sprite locations

PROJECTILE — SPRITE 1

Sprite Stretching
The values listed for the joystick
port sprite are READ from DATA

statements and poked into the ~
appropriate sprite locations. As
designed, the joystick port is
too compressed, but it can be

Stretched horizontally (as
shown) by changing the value of
the horizontal expansion
register

SCREEN
PLAY
In the last two
programming project, we designed screen
displays for two special locations in the
Digitaya adventure, for the Spectrum and
BBC Micro. Here, we look at designing and

instalments of this

programming these the
Commodore 64.

displays on

The designs of the faeeine screens for the BBC
Micro and the Spectrum were similar: both
computers have high-resolution graphics and easy
PRINT formatting in Basic. The differences lay
mainly in the screen dimensions and Basic dialect
words that handle high-resolution plotting.
Designing similar screens for the Commodore 64,
however, requires a radically different approach.
The 64 does have high-resolution facilities, but
effectively these are available only to the machine
code programmer, as no BASIC commands are
provided to handle high-resolution, and
performing the relevant PEEKs and POKEs in BAsIc
to produce high-resolution displays is so slow as to
make it unusable in this application. Instead, we
must adapt the relatively easy-to-use facilities
offered by the Commodore 64.

Graphics characters can be used to build up
large letters or other displays by combining
different characters. Sprites are a convenient
method of introducing high-resolution shapes to
the normal Commodore screen. PET characters
can be positioned on the screen using either a
series of PRINT statements or by POKEing the
relevant character code to the screen. We shall
demonstrate both methods.

JOYSTICK PORT SCREEN
Lines 8020 to 8170 of the Joystick Screen listing
are concerned with reading in the data for the two
sprites used in this routine. The first, sprite 0, is

JOYSTICK PORT — SPRITE 0
1 2

128643216 8 4 2 u 1286432168 4 2
SESsERES FRE ARSE

a BEREE 22ch 22"
RESERSR ARSE SSE
8 BEE BEE Bee
G Be Bee Bee
ie aan SER eE
a Z2aS ne eeee
& oe ea
& a |
a ais eekes
SESEERE SERRE
es L| || a |]

| GHEE BEBE
| BER Se Aeeee
G SRASERESERERe
ES KRRRS RRR RES
#28
ASR ERERRSE

952: gd
el NS a SO: pe et SO SE a a a SS a SSNS

3
ui2g6432168 42u 1 2 8
ae 0 0 a —————E—E—————E—— a

63 255 252
B2AZzsaeee 26 2 a ee ee? = ae a a as as sae ee Fe aes Ss es es Sea
B2Beece B22 2 ae pee lt ed ee de ede
BABBSESES Fee noes Cee 2 EE a Se ss Bs “ee ee a ee es ee
aze | i 12806=«t [ee ee ies oes ee ee SR eS a ee ee ee es ee ee Se ee
| | 162 «16 «(133 ee a ia i eS SS Re (ek eae ae gees ie nae TS as
a fe 162 «16 «(133 nt EMT HM lee hae Pe A ee
B2e B Gee eee oa? =e 2 a OG SS ee ee ee ee eee
Eee | 12806¢« a itt (23 Ses hee ae oe ee ee a eee ee
Biz | i 1280602«O i es ee a Se ee ee a a eae ee es eae ee eee
 Nesles | il i1280602¢«Oo = 1 pei Ses 2s en a ae a A se ie ee es
| | fy 12806¢«O0 S41 Sas eee Ee a a ee a se ee ee eee
B22) | 128060 (0 i 2 2 a ae ee a a a ee ee ee ee ee ee ee
EZSe | fm 136 «6617 eee | | | | eo |lhlUd|lUmd|TlUC TT LT eal inl
BEEZ Lf) 72 66. We al a ae ee | ree "AR BS Sa ee Pe yee
ase | 64 a pt fff ff tf
BES 4.0. 2 a 2 = a re ee Ee GE ee Cie eae ee ee ee ee
EREREE Vee es - | i a ee ees Se eS ie ae eae

31°°055 2B Te ae
sh op a 0 0° OL 4 ped yg tb Lt ee ee te

IE HOME COMPUTER ADVANCED COURSE

defined by the first 63 numbers in the group of
DATA statements between lines 8450 and 8497,
and represents the joystick port (shown in the
diagram). Sprite data is usually positioned high in
the BASIC program area, but with a large BASIC
program this data stands a good chance of being
overwritten. An alternative location is the cassette
buffer area between locations 832 and 1022, where
the data for up to three sprites can be held. This
routine stores its sprite data in this safe area.

Sprite 0 is stretched to twice its original width to
produce the final displayed shape by setting bit 0
of the horizontal expansion register in line 8170.
Notice that all the registers controlling the
attributes of sprites, such as colour, position and
expansion, are related to the start address for the
video control chip (VIC). Remembering that the
horizontal expansion register has the address
VIC+29 is much easier than memorising its actual
memory location (53277). Some sprite attributes
require a whole register for each sprite — for
example, the X and Y co-ordinate registers — but
where the eight bits independently control a
function for the eight available sprites, attributes
can be controlled by setting and unsetting the
appropriate bit in a single register. Sprite 1 is
defined by the remaining 13 numbers in the DATA
statements and represents an object to be fired out
of the joystick port.

Since the ‘solid’ part of sprite 1 is small (it |
represents a projectile), it is quicker and easier to
enter the 63 bytes of data that define it in two
stages. Firstly, POKE 63 zeros into the defining
area, and then READ and POKE in the few numbers
that define the shape. In this way, we can dispense
with the large number of zeros that would
otherwise be required as data.

Lines 8190 to 8220 are concerned with the
construction of strings constituted from a series of
PET graphics characters. LES forms a horizontal
line the width of the screen by combining 40 of the
special PET characters on the front right of the C
key. DWS isa series of cursor-down characters. LSS
and RSS are groups of left and right diagonals (on
the front right of the N and M keys) that are used
to form a herringbone pattern in the foreground.
This pattern introduces depth and perspective to
the scene. |

LIZ DIXON

neeeeemnieentieis

rr

The ‘Shoot’ routine at line 8310 chooses a
random point at the bottom of the screen and
directs sprite 1 down to it, the process repeating
until the player presses a key. The screen colours
are reset to normal, the screen is cleared and the
sprites are turned off before returning to the main
program. To use this subroutine with Digitaya, the
following line should be inserted:

3845 GOSUB 8000:REM JOYSTICK PORT PICTURE

The other listing provides a graphics display for
the ALU location in Digitaya and demonstrates
different methods of displaying characters on the
screen. Lines 7040 to 7090 read a number of DATA
statements and POKE the values straight into the
screen area. The corresponding location in the
colour area is also POKEd with the colour code for
the character. In this example the colour code is 2,
causing characters to be displayed in red.
A rather unusual trick is used to cause the large

letters ALU to scroll down the screen. The first
line of graphics character codes that go to make up
the letters ALU are POKEd to the second line on

the screen. The subroutine at line 7680 is then

called, causing the screen to scroll down one line.
The second line of codes can then be POKEd into
the same screen area as the first, and the
subroutine is called again. Repeating this for each
of the eight lines of code makes the letters ALU
appear to scroll from the top of the screen.

Two other methods of presenting character
data to the screen are demonstrated. Characters
can be PRINTed directly, as at lines 7130 and 7140,
or read as a data string to be PRINTed, as is the case
with the question mark design at lines 7170 and
7590 to 7670. This second method allows ease of
design within the DATA statements.

To use this routine add the following line:

4565 GOSUB 7000: ALU PICTURE

THE HOME COMPUTER ADVANCED COURSE 953

Letter Writing
The ALU location for Digitaya is
created from three PET low-
resolution graphics characters,
as shown. The large letters
formed appear to scroll down
from the top of the screen into
their resting position

LIZ DIXON

be nannies ESS ia caer

Loco is an ideal language for erie
mathematics. You begin by developing a
few procedures for basic arithmetic tasks,
and then use these primitives to perform
quite complex calculations. We demonstrate
how the language is used to calculate
factorials, and show how a few results are
transformed into ‘factorial trees’.

In how many ways can you arrange four people in
four chairs around a table? The first person can be
seated in any one of the four seats, but once he has
sat down only three choices remain for the second,
then there are two choices for the third, and for the
last there is only one place left. So, the total
number of different arrangements is 4 X 3X21.
This is usually written as 4! and read as ‘4 factorial’.
Factorials are often found in mathematics
problems concerning arrangements,
combinations and probabilities.

It is simple to write a recursive definition to
calculate factorials. First of all, we must note that
the factorial of 0 is defined as 1. The factorial of
any non-zero positive number — x say — is the
factorial of x—1 multiplied by x. Translating this
into a program we get:

TO FACTORIAL :X
IF:X=QOTHEN OUTPUT1 |
OUTPUT (FACTORIAL :X — 1) * :X

END |

To try it out, type PRINT FACTORIAL 6 — the result
should be 720.

This procedure works fine up to 12, but beyond
this the numbers become too large to be held as
integers by the computer. On the Commodore 64,
for example, PRINT FACTORIAL 13 gave 6.22702E9
— that is, 6.22702 times 10’. This is hardly
satisfactory, as the last four digits have been lost.
There are many reasons (including simple
curiosity) why we might want to know what these
remaining digits are. The first thing we need to do,
therefore, is extend the arithmetic capabilities of
LOGO SO that it can calculate to greater than seven
figure accuracy.

To simplify matters, we will only consider
positive integers. We'll represent the integers as
lists — so we will represent 1,234,567 as [123456
7]. The following two procedures will do addition
on such numbers. Try them out with PRINT
LONGADD [123] [569] — theresult should be [69 2):

TO LONGADD :X :Y
OUTPUT LONGADD1 :X :Y 0

END

954 THE HOME COMPUTER ADVANCED COURSE

TO LONGADD1 :X :Y :CARRY
IF (ALLOF (EMPTY?:X) (EMPTY? :Y) (:CARRY =
0))- THEN OUTPUT []
TEST EMPTY? :Y
IFTRUE IF :;CARRY = 0 THEN OUTPUT :X ELSE
OUTPUT LONGADD1 :X [1] 0
TEST EMPTY? :X
IFTRUE IF :CARRY = 0 THEN OUTPUT :Y ELSE
OUTPUT LONGADD1 [1] :Y 0
MAKE “SUM (LAST :X) + (LAST :Y) + :CARRY
OUTPUT LPUT REMAINDER :SUM 10 LONGADD1
BUTLAST :X BUTLAST :Y QUOTIENT :SUM 10

END
These procedures work in much the same way as
we would do additions on paper, adding from the
left and incorporating any number carried from
the previous column.

Subtraction is a similar process. However, we
have included a routine to delete leading zeros
from an answer, so that we don’t end up with
results such as [0 0 0 7 8].

TO LONGSUB :X :Y

OUTPUT STRIPZEROS LONGSUB1 :X :Y 0
END |

TO LONGSUB1 :X :Y :;BORROW
IF (ALLOF (EMPTY? :X) (EMPTY?:Y) (:BORROW =
0)) THEN OUTPUT [0]
TESI-ERIPTY oY
IFTRUE IF :BORROW = 0 THEN OUTPUT A ELSE
OUTPUT LONGSUB1 :X [1] 0
IF EMPTY? :X THEN PRINT [SORRY, | CAN’T
HANDLE A NEGATIVE RESULT] TOPLEVEL
MAKE “DIFF (LAST :X) — (LAST :Y) — :BORROW
IF :DIFF <0 THEN OUTPUT LPUT (10 + :DIFF)
LONGSUB1 BUTLAST :X BUTLAST:Y 1 7
OUTPUT LPUT :DIFF LONGSUB1 BUTLAST ‘X
BUTLAST :Y 0

END

TO STRIPZEROS :X
IF EMPTY? :X THEN OUTPUT [0]
IF NOT ((FIRST :X) =0) THEN OUTPUT :X
OUTPUT STRIPZEROS BUTFIRST :X

END

Long multiplication is slightly more complicated.
We'll implement it using the technique normally
taught in schools. For example, supposing we
want to multiply 123 by 338. The problem is split
up into three parts: first we multiply 123 by 8; then
we multiply 123 by 330; and, finally, we add the
two results together. This method depends on the
fact that the second stage can be broken down into
two sub-stages: firstly, 123 is multiplied by 33; and
then a zero is placed at the end of the result. To
multiply a number by 33 clearly involves the use of

|

IAN McKINNELL

recursion. The procedure LONGMULT controls this
general strategy: |

TO LONGMULT :X :Y
IF EMPTY? BUTLAST :Y THEN OUTPUT
LONGMULT1 :X LAST :Y 0
OUTPUT LONGADD (LONGMULT1 :X (LAST :Y)0)
(LPUT “O LONGMULT :X BUTLAST :Y)

END

The details of multiplying a line by a single digit are
carried out by LONGMULT1: |

TO LONGMULT1 :X :NO :CARRY
TEST EMPTY? :X
IFTRUE IF :CARRY = 0 THEN OUTPUT [] ELSE
OUTPUT (LIST :CARRY)
MAKE “PROD (LAST :X) * :NO + :CARRY
OUTPUT LPUT REMAINDER :PROD 10
LONGMULT1 BUTLAST :X :NO QUOTIENT
‘PROD 10

END

We won't need procedures to perform division for
calculating factorials, but you might care to extend
the system to cover division for yourself.
We now have a set of primitives for carrying out

arithmetic to any degree of precision. The only
limitation on the size of numbers that can be
handled is the total memory space available to the
program.

MAKING MODIFICATIONS
We can now modify our original factorial program
to use our new form of long multiplication.

TO FACT :X
IF FIRST :X = 0 THEN OUTPUT [1]
OUTPUT LONGMULT (FACT LONGSUB :X [1]) :X

END

To try it out type FACT [1 3]; you should get [62270
2 0 8 0 Oj as the result. There are problems,
however. The calculation process is slow, and —
on the Commodore 64 — the largest factorial we
obtained before running out of memory was 34},
which has 39 digits (and took some time to be
calculated).

The expression of large numbers as lists looks
rather unusual, but we can modify the program to
overcome this problem by translating back and
forth between our usual notation and the list form.
We employ two procedures — EXPLODE and
IMPLODE — to do this.

EXPLODE 123 outputs [1 2 3] and IMPLODE [1 2 3]
outputs 123

TO EXPLODE :X_
IF EMPTY? :X THEN OUTPUT{]
OUTPUT (SENTENCE FIRST :X EXPLODE
BUTFIRST :X)

END

TO IMPLODE :X
IF EMPTY? :X THEN OUTPUT“
OUTPUT (WORD FIRST :X IMPLODE
BUTFIRST :X)

END

THE HOME COMPUTER ADVANCED COURSE 955

Number Tree
Factorial trees are generated
by using the leftmost digit of a
factorial value as the top of
the tree. Subsequent digits are
pulled out of the actual value,
from left to right, in groups of
slightly increasing size. The
groups are placed below, and
in a Symmetrical position to,
the cornerstone digit building
up a tree shape. This diagram
represents the factorial of 32.
The value can be read more
simply when the numbers are
placed in groups of three, as"
shown

These procedures depend on the fact that
numbers in Loco are treated as words. By using
them, we can now define a procedure, F:

TO F:X
PRINT IMPLODE FACT EXPLODE :X

END

Which will calculate the factorial of 13 in response
to the input: F13.

The result of this calculation — 6227020800 —
is a little hard to read as such. It is more usual to
insert commas (6,227,020,800), which makes it
easier to understand. The following procedures
divide the word up into groups of three digits and
insert commas.

TO ADDCOMMAS :X
((COUNT :X)<4) THEN OUTPUT :X

OUTPUT (WORD ADDCOMMAS BUTTHREE :X
LASTTHREE :X)

END

TO BUTTHREE :X
OUTPUT BUTLAST BUTLAST BUTLAST :X

END

TO LASTTHREE :X
OUTPUT (WORD (LAST BUTLAST BUTLAST :X)
(LAST BUTLAST :X) (LAST :X)))

END

We must also modify F to incorporate these
procedures:

TOEX:.
PRINT ADDCOMMAS IMPLODE FACT EXPLODE :X

END

956 THE HOME COMPUTER ADVANCED COURSE

Using F to print out the first 20 factorials gives
some idea of how quickly factorials grow in size
(the results are given in the table).

Having obtained the factorials of a range of
numbers, we can begin to ‘play around’ with our
results. An American mathematician, for
example, once had the brilliant idea of printing out
large factorial numbers as trees on the Christmas
cards he sent to his friends. Not many factorials
have the right number of digits to be printed as
trees, but the following procedures will work if it is
possible to do so:

TO TREE :L
JRE TL

END

TO TREE1 :NO:L

IF EMPTY? :L THEN STOP
REPEAT ROUND (20 — :NO / 2) [PRINT1 SPACE]
LINEPRINT :NO :L
TREE1 :NO + 2 PRUNE :NO:L

END

TO SPACE
OUTPUT CHAR 32

END

TO LINEPRINT :NO :L
IF :NO =0 THEN PRINT “STOP
PRINT1 FIRST :L
LINEPRINT :NO — 1 BUTFIRST :L

END

TO PRUNE :NO :L
IF :NO=0 THEN OUTPUT :L
OUTPUT PRUNE :NO -1 BUTFIRST :L

END

Once again, our controlling procedure must be
modified:

TO F :X
TREE IMPLODE FACT EXPLODE :X

END

The diagram shows 32! written out asa tree. If you
are interested in exploring these factorial trees
further, you might like to know that there are only
three numbers less than 32 whose factorials can be
written as trees. The next larger suitable factorial is
59!

THE FX EFFECT

operating system in recent instalments, we
return to the subject with a_ closer
examination of OSBYTE calls, a
convenient way of accessing many of the OS
functions of this computer.

When we first considered area ee access ihe
operating system of the BBC Micro (see page
879), we briefly discussed a group of OS calls
known as OSBYTE calls. These enable us to modify
the behaviour of various parts of the operating
system. For example, the OSBYTE call *FX4,1
enables us to change the way in which the
computer responds when one of the cursor keys
on the BBC keyboard is pressed.

When you realise that there are well over 100 of
these calls in the Version 1.2 OS (see page 858),
it’s not surprising that they offer us a convenient
way of accessing many of the OS functions of the
BBC Micro. We’ve already seen that the use of
indirect OS calls provides us with insurance
against changes in the hardware and software
configuration of the machine; OSBYTE provides us
with a major method of using OS routines.

Before we go on to examine OSBYTE in detail, it
should be pointed out that if your machine has an
old Version 0.1 OS, some of the OSBYTE calls
mentioned in this course and in the BBC user
guide are not actually supported. You can find out
which version your machine has by typing *HELP
‘RETURN>.

Let’s look first at how OSBYTEis used from BASIC
and machine code. Like many BBC OS calls,
OSBYTE is vectored (see page 878). The OSBYTE
vector is at addresses &20A and &20B. ‘The ways in
which we can issue an OSBYTE call are shown
below. These will all execute the OSBYTE call

mentioned above — *FX4,1:

It’s clear from these three examples that the
address at which we call the OSBYTE routines is
&FFF4, and that parameters are passed over to the
OSBYTE callin the A, X and Y registers of the 6502
processor. Assigning a value to A%, X% or Y%
from BASIC and then calling a machine code
routine with the USR or CALL command from BASIC
will enter the machine code program called with
the A, X and Y registers of the processor holding

the values that were in the A%, X% and Y%
variables, respectively. The use of USR in the
second example enables us to get a result from a
machine code program back into a BAsic variable.
This is useful with regard to some OSBYTE calls, as
they can return information to BAsic — we will
discuss this in detail later.

In the third example, we use a short machine
code program to make the OSBYTE call; we simply
load the necessary registers with the appropriate
values and then call OSBYTE at its call address of
&FFF4. These examples also show how the
parameters (4 and 1) passed to the OS with an FX
call, correspond to the parameters passed in the
A, Xand Y registers when we call OSBYTE routines
from machine code or with a USR call.

No matter which method of calling the OSBYTE
routine we choose, the contents of the A register
always specify which of the many OSBYTE routines
is to be used. X and Y registers are then used to
pass over parameters to the desired OSBYTE
routine. Some OSBYTE calls require no
parameters; some require just one parameter to be
passed over in the X register; and others, less.
commonly, require two parameters, passed over
in the X and Y registers.

Here are some examples of all these types of
OSBYTE calls:

There are a couple of points to note about calling
OSBYTE routines via the use of the *FX call. One is
that OSBYTE is totally ignorant of BAsic variables —
like all * commands. Executing the code below
will give the Bad Command error message:

a=4:b=1
*FX a,b

However, we can get round this problem by
passing the FX command to the OS using OSCLI:

10 DIM C 100
20 a=4
30 b=1
40 SC=“*FX ”+STRSa+“,”+STRSb
50 X%=C MOD 256
60 Y%=C DIV 256
70 CALL &FFF7

The other point to note about FX calls is that you
cannot put anything else on a program line after
them. Thus:

*FX 4,1:PRINT “Oooops!”

will generate another Bad Command — the OS

THE HOME COMPUTER ADVANCED COURSE 957

LIZ DIXON

& & & & & & & & & & & & & & & & & G
cn a" & * 5 is i. oe & & Ps & % ee ‘& & & & & a & a & & & & ie Ps és & &

d t & & & & & & & & & & & ae = = Fait aS = ace cy Lae 2, & a cy fit Nish & aad
&
&

pS b bb bb bh Db Db bb Db
er pacts!

fh SG Ore
Three hree

M ‘ V9. 0.9.9,00 09 099090990909 95,0,.01 949 0 1990.9. 1.94%, Boccia Pi
& & & & & &

i , J or pobearnoanai tn nis

os & prodraniming praotles,‘sinCe: st
-itinsilatés, “softwate against «: os

& charges it-Oré-08 locations: oe & & Bw

‘ «In BBE BASIC: fue

ate cabeisndlaiord te ‘|
§ -initiatiséd i:
«code, and-uses the X and-¥-.*<.°
: & - “processor. reyisters.fof.<.%.%.%. &

&
a8? Sess

2+ RSTRNT DESIG PHATE. ,
& & & & & & & & &

regards the colon and the PRINT statement as part
of the FX command.

Both problems are caused by the fact that the
*FX calls are passed through the command line
interpreter (CLI) rather than the Basic interpreter,

and the CLI has no ‘knowledge’ of how to
evaluate Basic variables and deal with multi-
statement lines.

As we have shown, it is possible to pass
parameters over to OSBYTE in the X and Y
registers; it is also possible to read values back
from some of the system variables used by the
operating system. This can be done by using the
USR call or the machine code routine — as we’ve
already shown. You'll probably find the machine
code method easier to use when youre interested
in getting results back from the OS — the value
returned by the USR call has to be decoded to get
various bits of information out of it. Parameters
are passed back to BAsic in the X and Y registers,
and in some of the calls the carry flag is also used to
signal error conditions.

The results passed back in this way will
obviously depend upon the call — that is, on the
value passed to OSBYTE in the A register. Not all
OSBYTE calls pass results back to BAsic. However,
many of those that do provide us with some useful
information about the OS.

Two kinds of information may be passed back
by an OSBYTE call. The first is data read from some
part of the system, such as the user port, speech
processor or system variables. OSBYTE calls
passing back this sort of information are referred
to as ‘read only’ calls. A typical example of their
use is the OSBYTE call with A=129. This call is used
by BAsic to implement the INKEY() function.

The X and Y registers should be set up to pass
the required time delay over to the operating
system. The X register holds the low byte of the

time delay — in centiseconds — and the Y register
holds the high byte. Thus, to use this call to wait for
up to one second for a keypress, we can use the
section of machine code shown below. The X and
Y registers pass values back; if the carry flag is set
to 0, and the Y register holds a value of 0, then the
call was exited by a keypress. The ASCII value of
the key thus returned is to be found in the X
register. If Y holds 255 and C is set to 1, then no
key was pressed in the time period allowed. If Cis
set to 1 and Y holds 27, this indicates that the
Escape key has been pressed.

The following section of code shows how this
OSBYTE call can be made. If the carry flag is set on
return from the subroutine a branch is made to a
further handling routine. This routine may test the
value in the Y register to determine whether a key
has been pressed or the Escape key has been hit. —

1000 LDA #129 /set OSBYTE
1010 LDX #100 /parameters
1020°. LBY¥ #0
1030 .. JSR &FFF4 /make OSBYTE call
1040 BCS error
1050 RTS
1060 ~—_—.error /code to deal with error

Other OSBYTE calls, especially those with a value in
A of between 166 and 255, are both read and ~
write calls, and they enable us to either read or
write certain system variables in the OS. You may
begin to wonder how the OSBYTE call knows
whether a read or write operation is required; it’s
actually quite simple.

To write a value with the OSBYTE call, the call is
made with the X register holding the value we
want the OSBYTE call to write and the Y register set
to 0. To read a value back from one of these
systems variables, X is set to 0 and Y is set to 225.
The call is then made. If a value is returned, it
resides in the X and Y registers.

THE USES OF OSBYTE CALLS
OSBYTE calls are the ‘Civil Servants’ of the
operating system, being involved in many of the

‘different OS routines. Filing systems, the
keyboard, Econet, the Break and Escape keys —
all are affected to a greater or lesser extent by
OSBYTE calls. The number of different OSBYTE
calls available makes it impossible to discuss them
all, but here are a few of the more useful ones not
covered in detail in the BBC Micro’s user guide.

Function keys: *FX18 has no parameters, but is
quite useful. It deletes from memory the current
function key definitions, so is handy when you
want to define a function key more than once in a
program.

*FX225 to “FX228: If you’ve not programmed a
function key with a string, you can use these calls
to make the red function keys return an ASCII
value. For example, *FX225,n will cause function
key f0 to return the ASCII code for n when
pressed, f1 will return ASCII code (n+1), and so
on. *FX226 does the same job for the occasions

eo

when the keys are pressed in conjunction with the
Shift key, *FX227 for when the keys are pressed in
conjunction with the Control key, and *FX228
works when both the Shift and Control keys are
pressed with the function Keys.

Video functions and VDU drivers: Most of the
control of display in the BBC Micro is performed
by writing values to the VDU drivers. However,
there are a couple of OSBYTE calls that are helpful
in this context.

*FX19: Although this has no parameters, it is
useful when youre programming moving
graphics. Once executed, it causes the computer
to wait until the next frame of the display is drawn
before continuing. This results in moving graphics
that are less ‘flickery’. The call must be made
whenever the pause is required. As the display is
redrawn 50 times per second, it can be used to
generate time delays or to provide interrupts to
the CPU.

*FX218: This is a read/write OSBYTE call that
informs us of the length of the “VDU queue’. We
have already explained how some VDU codes,
when sent through the VDU drivers, expect other
codes to follow them (see page 897). The number
of bytes that the VDU drivers are still waiting for
at any time is the number of bytes in the VDU
queue. On the whole, this call is best used to read
information back, and the result will be returned
in the X register.

*FX20: This call enables us to redefine
characters in the ASCII range 32 to 255, rather
than the more usual and limited range of user-
defined characters. We can thus redefine, in
Modes 0 to 6, the characters that are accessed
from the normal keyboard. To redefine the
characters with ASCII codes in the range 32 to
128 we must set aside memory from our BASIC
workspace by setting PAGE to a higher value than
usual. The redefinition of these characters is done
with the VDU23 call. Characters are redefined in
blocks of 32, each block requiring 256 bytes of
memory. The only parameter used is passed over
in the X register. Full details of this technique are
given in the user guide.

Sound: *FX210,n is a useful call for those plagued
by noisy ‘blast-the-aliens’ games. It allows you to
disable the sound effects. *FX210,0 enables sound
to be heard in the usual fashion, but any other
value as the X parameter kills the sound.

*FX211 to *FX214: These calls control the sound
generated by CTRL-G or VDU7. They are read/write
calls. *FX211,n controls the channel of the sound
chip on which the VDU7 sound is generated.
*FX12,n controls the volume of the sound
generated, or the envelope used to generate the
sound. The volume is coded in the same fashion as
the amplitude parameter in the Basic SOUND
command — thatis, -15 is very loud, 0 is inaudible,
and positive numbers are envelope numbers. ‘The
value passed over to the X register in the FX call is
given by (n-1)*8, where n is the parameter.
*FX213,n controls the pitch of the tone generated

by VDU7; *FX214,n controls the time for which the
tone generated by VDU7 1s played.

Escape key: *FX229,n enables the Escape key to be
‘turned off. “FX229,1 disables the Escape key, and
*FX229,0 enables normal Escape key action.

*FX220,n enables the user to set up a key to
generate the Escape event — n being the ASCII
code of the key that you wish to act as Escape. The
normal Escape key is disabled. Thus, *FX220,65
causes the Escape event to occur whenever the A
key is pressed.

Buffers: *FX21,n flushes — or empties — a buffer.
This operation removes any bytes from that
buffer. For example, flushing the keyboard buffer
removes any keypresses that might have
accumulated while a program has been running. If
you try a GET command when there are some
unprocessed ‘keys’ in the keyboard buffer, the GET
command will fetch a key from the buffer instead
of waiting for a keypress to occur. Flushing a
sound buffer finishes sound generation on that
particular channel, even if there are sound
commands waiting to be processed by the sound
chip. The buffer to be operated on depends upon
the X parameter (see table in the margin).

*FX138,n,m: This inserts the value m into the
buffer numbered n. Buffer numbers are the same
as for *FX21. Thus, *FX138,0,65 will insert the letter
A into the keyboard buffer.

All these OSBYTE calls can, of course, be made by
passing the relevant parameters in the A, X and Y
registers and making the subroutine call as
described earlier.

We have covered all the major functions that
come under the control of OSBYTE calls. There are
many more that we could examine in detail — you
will find them listed in the BBC Micro user guide
— but the techniques involved in using them are
the same as those described here.

THE HOME COMPUTER ADVANCED COURSE 959

Z :
___ SAIC

Women And Computing
by Rose Deakin,

Papermac, 1984, £5.95
ISBN 0-333-37493-2

The
Micro Revolution
NeVsiioe

oreword by | lel lararerel

The Micro Revolution Revisited

by Peter Large,
Frances Pinter, 1984, £6.95
ISBN 0-86187-511-7

emphatically demonstrate her theme:

Computers will change the lives of people and nations as the wheel and the book
have done. These changes are happening already but we are only starting to identify

their effects, and have not yet begun to control them. These two books consider
those changes in different ways: Rose Deakin sees computing as an opportunity for

women, Peter ‘Large thinks it a challenge for man.

WOMEN AND COMPUTING
‘Why not encourage the women? The male
manager is terrible — he’s been mucking up
industry for the last 20 years’. The words are
attributed to a male professor of organisation
psychology, but the thoughts are very close to Rose
Deakin’s own, though she’s too polite to say so. She
doesn’t waste time on men or the sex war,
however; her concern is that women see
computing as a source of employment, and
computers as industrial equipment.

Her approach is calm and matter-of-fact,
-recognisably the fruits of her career as a social
worker, computer sales consultant and writer. The
book reads like a good analyst’s feasibility report
— computing is an opportunity that women are
apparently not taking. She sees the long-term
remedies as education, employment and
eee

“Ttis possible to break into computing
with few qualifications and little

EE

experience, and without unprecedented
abilities or intelligence.’

promotion, and the short-term obj ectives as self-
help and enterprise — in short, women should act
now to take advantage of the new market. ‘There
are suggestions for training, buying equipment
and job-hunting, along with plain, non-
patronising explanations of technical points, a
glossary and a very good index.

There’s humour and wit as well, however.
Deakin is delighted to describe her feeling of glee
after lecturing an audience of 200 senior civil
servants on database management only a few
months after learning the meaning of the term,
and is rightly proud of the book that she expanded
the lecture into.

Three chapters, which combine her personal
and professional virtues, are especially interesting.
They describe the different routes that she and
seven other women took into computing, and

as SS

“Researchers observe that] ...the girls
are making the correct suggestions for

solving the problem in hand; their
suggestions are brushed aside by the
boys, who then take three attempts to

get it right.’
ee Sec ea

that
women’s aptitudes for organisation and
communication, and their capacity for clear-
thinking and hard work make them ideal
computer users. The message to all women is
clear: make computers your golden opportunity.

960 THE HOME COMPUTER ADVANCED COURSE

a

eee es

MICRO REVOLUTION REVISITED
A foreword by Neil Kinnock, the present leader of
the Labour Party, the Open University’s Set Book
seal on the cover and a Guardian newspaper
correspondent as author are this book’s obvious
credentials. They imply that the book will be
socially concerned, optimistic, authoritative and
well-researched.
And, on the whole, it is. Peter Large is a fine
technical writer with good command of his sources
and an obvious interest in computing and
technology. The sociological theme of the book is
the challenge that the growth of the computer age
presents to established patterns of society.

See ee Ee SS es

After all, computers are rigidly
mathematically logical: people, praise

be, are not. :

From the confused history of the first 40 years
of computing, Large abstracts the five deadly
dangers of thoughtless computerisation: crime,
inefficiency, ignorance, unemployment and
totalitarianism. He might have added redundancy
— this book is, at least, a sixth revision of The
Micro Revolution, written in 1980. Where Large
began by enthusiastically heralding the new
Industrial Revolution, he now stridently warns
against repeating the mistakes of the old one. He
describes the gadgets and the gizmos with verve
and expertise, all the while developing his theme
of industrial society’s vulnerability to the
computer’s effects on production, employment,
education and communication.

Large is engagingly enthusiastic about the
possibilities of technology, but not starry-eyed
about our society’s ability to cope with de-skilling,
j ob loss and automation. At the start of the book's
eee en

‘We have let our ‘machines evolve
instead of redesigning them.’

Seeee ae as So eee ee

survey of work, communications, “robotics and
future developments he describes an imaginary
day in the life of Jane and Joe Babbage, circa AD
2014. Jane edits an international financial
newspaper from a Cornish beach, while Joe runs
his doctor’s rounds over the public computer-
videotext network. Their meagre earnings from
interesting jobs are contrasted with the high wages
paid to Nat, a 73-year-old handyman who still
knows how to do manual labour. By the end of the
book it’s difficult to know whether Large hopes
for or dreads his imagined future, and in what
relative numbers he thinks we will follow Jane and
Joe’s cosy route to middle-class poverty and Nat’s
road to working-class abundance.

_ THE HOME COMPUTER ADVANCED COURSE
INDEX TO ISSUES 37 TO 48

A
Abacus 7 24-725
Aegean Voyage 906- 907
Alf In The Color Caves 907
ASCII control codes 900, 922

BBC Micro
adventure game 166-768,
792-793, 813-815, 826-
828, 846-848, 866-868,
883-885, 904-905
BBC Buggy 823
buffer box 799
D/A converter 732-734,
746-748, 800
graphics 749-751, 752-753
mains relay 199
maze mapping program 77/2-
773
memory mapping 878-880
multiple servo control
program 923-925
operating system 858-859,
878-880, 897-900, 957-959
output box 798
robot measurement
program945
seven-segment display 800
single servo control program
923-925
utilities 126-727, 7 32-7 34,.
746-748
variable replacement
program 7/26-727

| Beasty 770-771, 822
BrainStorm 864-865

Buffer box 799

fe
Canon Al camera 909-910
Canon 170 camera 911

Commodore 16 789-791
Commodore 64

adventure game 166-768,
792-793, 813-815, 826-
$28, 846-848, 866-868,
883-885, 952-953
alternate screens 918-920
buffer box 799
D/A converter 132-734,
746-748, 800
mains relay 799
maze mapping program 172-
‘73
multiple s servo control
program 923-925
output box 798
robot measurement
program 945
single servo control program
912-914
seven-segment displa 'y 800
smooth scrolling 937-939
utilities 726-727, 732-734,
746-748
variable replacement
program 126-727

Communications 901-903, 921-
922, 941-942

Compag Plus 869-871
Computer-controlled devices 731
Control structures 739
Cyber 310 843

D
Dance Fantasy 906

| Deus Ex Machina 740.
Digital-to-analogue converter

732-734, 746-748, 800
Digitaya game 768, 793, 815, 828,

848, 868, 885, 905, 933, 953
Duplex 921

E
Edinburgh Turtle 823
Educational software 906-907,

926-927

EVI Video System 749-751

-

Factorials 954

Flyerfox 760

G
Genesis P101 842
Graphic devices 730
Graph Plan 752-753

H
Handshaking 728
Hard disk 728

| Hashing 728
Haunted Forest game 768,

792-793, 813-815, 827-828,
846-848, 866- 867, 883-884 —

Header 728

Hebot II 822
Hero 842
Hertz 757

Heuristic 757
Hexadecimal 757
Hierarchical communications

system 757 _
Hi-res graphics 757
Hollerith code 769
Holographic memory /69
Host computer 769
Housekeeping 769
HRA933 843
HRA934 843
Human Edge 946-947
Human factors engineering 769
Hybrid integrated circuit 769

Identification 794
IEEE 794
IF-THEN-ELSE 794
Impact printers 794
Impulse noise 794
Index 816
Indexed file 816
Index register 816
Information

hiding816
management system 816 —
storage and retrieval 829
technology 829
theory829

Initialisation 829
Ink jet printer 829
Input device 852
Input/ output 852
Instruction 852
Instruction counter 852
Instruction set 852

Integer 852
Integrated circuit 872

"THE HOME COMPUTER ADVANCED COURSE
INDEX TO ISSUES 37 TO 48.

Intelligent terminal 872
Interactive grahics 872
Interface 8/2
Interpreter 872

| Interrupts 888 |

Job control language 888
Joysticks 731
Jump88&8

| Junction 888

Justify 888

Karsaven map 908
Kernel 908
Key 908 -
Keyboard 908 _
Keypad 908

__| Keypunch 928
| Keyword 928 ©
_ Kids On Keys 926-927
Kindercomp 907
'Kludge928_

|.

Label 928 _
| Language construct 948

Laser printer 948
LCD 948
Learn To Read 927
LED 948
Lexical analyser 948
LIFO 948
Link 480Z 889-891
_LOGO 735-737, 754-756,

714-776, 786-788, 808-
809, 832-833, 853-855,

__—- 873-875, 892-893, 915-
_ 917, 934-936, 954-956

| Lotus 1-2- 2 784- 785

M
_Machine code 738-739, 758-759,

7771-779, 795-797, 817-
$19, 838- $40, 858- $59,
878-880, 897-900, 918-
920, 937-939, 957-959

Mains relay 799 ©
Maze mapping program 7 Ti-113
Memocon Crawler 823
Memotech RS128 949-951 |
Mentor 842
Micro Swift 886-887

_ The Micro Revolution Revisited
/—6960

Mindstorms 940
Modems 730, 901-903
Monitors 73 1
Mugsy 780
MultiPlan 764-765

N
Neptune 1 842
Neptune 2842 |
Nikon FA camera 910-911
Number Tumblers 907

Operating systems 858-859,
878-880, 897-900, 957-959

Osborne Encore 849-851

Output box 798

P
Pentax Super A camera 910- 9 ii
Photography 909-911
Pick and place program 802
Pocket computers 929-931 _
Practicalc Il 886-887
Printer/ plotters 731
PS 886-887

R
_ Robotics 721-723, 741-743,

761-763, 770-771, 781-
783, 801-803, 821-823,
841-843, 861-863

Servo control programs 914, 925
_ Servo motors 912-914, 923-925
Seven-segment display 800
Sharp PC-1251 929-931
Sharp PC-1500A 929-931

| Sinclair Spectrum
adventure game 766-768,
792-793, 813-815, 826-
828, 846-848, 866-868,
883-885, 932-933
utilities 744-745
variable replacement
program 744-745

Sinclair Spectrum+ 806-807
| Snap camera 749-751

Software
foreign language translation
881-882

_| Speech synthesizers 730
| Spreadsheets 724-725, 752-753,

764-765, 784-785, 804-
805, 824-825, 886-887

Starfinder 820
Storage systems 729
Story Machine 926
Summer Games 860

| Terminal emulation 922
_ Terminal protocols 921-922
The Soul Of A New Machine 940

| TK!Solver 804-805, 824-825 |
Touchmaster 830-831

y
‘Utilities 726-727,744-745 |

V
Valiant Turtle 823
Variable replacement program _

726-727
Vertical software 844-845, 864-

865, 946-947
Vizastar 886-887

WwW
Workshop robot 810-812,

835-837, 856-857, 876-
877, g94- 396

Women And aoe a“

X
XModem protocol 922

6809 microprocessor 738-739,
758-759, 777-779, 795-
797, 817-819, 838-840 |

